

Ministry of Lands, Agriculture, Fisheries, Water and Rural Development

TABLE OF CONTENTS

TABLE OF	F CONTENTS	i
LIST OF T	ABLES	ii
LIST OF F	IGURES	iii
LIST OF A	CRONYMS	iii
PREFACE.		V
EXCEUTIV	VE SUMMARY	vi
CHAPTER	1: INTRODUCTION	1
1.1	Background	1
1.2.	Objectives of the Post-Harvest Survey	1
1.3.	Uses of Post-Harvest Information	2
2		3
CHAPTER	2: SURVEY METHODOLOGY	3
2.1	Survey Design	3
2.3.	The Post-Harvest Survey Questionnaire	4
2.4.	Training	4
2.5.	Data Collection	5
2.6.	Data Processing	5
2.7.	Quality Control	5
2.8.	Challenges	6
СНАРТЕ	R 3: SURVEY RESULTS	7
3.0.	Response Rate	8
3.1:	Crop produced	8
3.2:	Seed Used	13
3.3:	Cattle Status	13
3.4.	Business Units and Nutrition Gardens	18
CHADTEL	2.4. CONCLUSION AND DECOMMENDATIONS	20

LIST OF TABLES

Table 3.1: 2024/25 Post-Harvest Survey Response rates by Province	8
Table 3.2: Total Production (in metric tonnes) by Type of Crop	8
Table 3.3: Utilization of Cereal Crops Produced	9
Table 3.4: Maize production (in metric tonnes) by province	9
Table 3.5: Cereal Production (in metric tonnes) by Province	11
Table 3.6: Cereal Production (in metric tonnes) by Sector	11
Table 3.7: Oil Seed Crops Production (in Metric tonnes) by Province	12
Table 3.8: Oil Seed Crops Production (in metric tonnes) by Sector	12
Table 3.9: Percent Distribution of Main Storage Type used for Cereal Crops	13
Table 3.10: Quantity (in metric tonnes) of seed used by Type of Cereal Crop	13
Table 3.11: Distribution of Farming Households Owning Cattle by Province	14
Table 3.12: Percent distribution of average trekking distance to the water source for cat	tle15
Table 3.13: Percent distribution of households by main source of cattle feed	17
Table 3.14: Number of Business units by type and Province	18
Table 3.15: Production from Business Units by crop ad province	18
Table 3.16: Incomes generated from Business Units by province	19
Table 3.17: Number of nutrition gardens by province	19
Table 4.1: Cereal consumption scenarios & April 2025 to May 2026 national cereal bala	ance.20
Table 4.2: Cereal estimates, purchases and consumption	21

LIST OF FIGURES

Figure 3.1: Percent distribution of households by factor that could have affected potential
maize harvest
Figure 3.2: Cereal crops by purpose of stocking
Figure 3.3: Percent distribution of farming households with adequate water for cattle within
provinces
Figure 3.4: Distribution of farming households with adequate water for cattle within
provinces
Figure 3.5: Distribution of average trekking distance to the water source for cattle16
Figure 3.6: Percent distribution of households by cattle body condition
Figure 3.7: Distribution of households by cattle body condition17

LIST OF ACRONYMS

ABAO Agriculture Business Advisory Officer

CBU Community Business Unit

CSPro Census and Survey Processing

GDP Gross Domestic Product

MLAFWRD Ministry of Lands, Agriculture, Fisheries, Water and Rural

Development

PHS Post-Harvest Survey

PICES Poverty, Income, Consumption and Expenditure Survey

SAS Statistical Analysis System

SBU School Business Unit

VBU Village Business Unit

YBU Youth Business Unit

ZIMSTAT Zimbabwe National Statistics Agency

PREFACE

This 2024/25 Post-Harvest Survey Report, is a collaborative effort between Zimbabwe National Statistics Agency (ZIMSTAT) and the Ministry of Lands, Agriculture, Fisheries, Water and Rural Development (MLAFWRD). The report represents a vital component in our ongoing commitment to enhancing the availability of credible agriculture statistics in Zimbabwe

Recognizing the importance of the agriculture sector in the country's economy, it is essential to continuously produce timely and reliable agricultural statistics to inform relevant policy and decision-making. The report, therefore, presents the results of the Post-Harvest Survey for the 2024/25 agriculture season, providing comprehensive data on crop production, seed used, and cattle status.

The importance of Post-Harvest Survey cannot be overstated as it serves as a main data source for policy formulation and benchmarking for future initiatives aimed at increasing the efficiency of agricultural practices. The findings will inform stakeholders, including policymakers and farmers, fostering a collaborative approach to overcoming the obstacles that hinder productivity.

As we move forward, it is important that we utilise the survey results to implement effective strategies that empower our farmers, strengthen the agricultural value chains and enhance food security. Together, let us commit to transforming the agricultural landscape of Zimbabwe, ensuring that our farmers can thrive and that our communities remain resilient in the face of challenges.

We would like to extend our sincere gratitude to farmers and all stakeholders who participated in this survey. Your insights and experiences remain invaluable as we strive to build a resilient, prosperous, and empowered upper-middle-income society.

Mily

Tafadzwa Bandama Director-General Zimbabwe National Statistics Agency (ZIMSTAT) Odin

Professor Obert Jiri Permanent Secretary Ministry of Lands, Agriculture, Fisheries, Water and Rural Development

V

EXCEUTIVE SUMMARY

The Post-Harvest Survey (PHS)for the 2024/2025 agricultural season was conducted during the period 28th August 2025 to 5th September 2025. The PHS is a follow-up to the CLAFA-2 assessment conducted in April 2025, and provides a comprehensive picture of crop production and use of key agricultural inputs.

The survey results revealed that the total cereal production reached **2,242,937** metric tonnes, comprising **1,819,819** metric tonnes of maize, **288,344** metric tonnes of sorghum, **111,399** metric tonnes of pearl millet, and **23,376** metric tonnes of finger millet. The survey results also showed that **1,064,510** metric tonnes of maize was in stock during the survey period representing approximately **58.5%** of the total maize production.

About 73% of households with cattle reported their livestock to be in fair condition during the survey period, while 25.3% reported a good condition. The average trekking distance to the main water source was generally within 3 km radius, while natural veld and crop residues were reported as major sources of cattle feed.

There were **746** active Business Units and **2,242** Nutrition Gardens, with approximately **94%** of the Business Units fully functional.

CHAPTER 1: INTRODUCTION

1.1 Background

In an effort to strengthen the accuracy and reliability of agriculture statistics, the Zimbabwe National Statistics Agency (ZIMSTAT) and the Ministry of Lands, Agriculture, Fisheries, Water and Rural Development (MLAFWRD) partnered to undertake a comprehensive 2024/2025 Post-Harvest Survey (PHS). This strategic collaboration was designed to achieve two primary objectives. Firstly, to enhance the quality of agricultural statistics produced in Zimbabwe, thereby providing a robust foundation for informed decision-making. Secondly, to optimize resource utilization by eliminating duplication of efforts in survey administration, thus ensuring a more efficient and cost-effective data collection process.

The Post-Harvest Survey was timed to coincide with the August/ September period when farmers would have completed their harvests, processed their crops and commenced deliveries to marketing boards and other markets. The PHS is a follow-up survey built upon earlier crop assessments conducted in February and April 2025, ensuring continuity and comparability of data. By targeting approximately 58,000 farming households across eight rural provinces, the survey aimed to capture a comprehensive snapshot of agricultural production patterns and trends in these critical regions.

By collaborating, ZIMSTAT and MLAFWRD seek to contribute meaningfully to the development of evidence-based policies and interventions that support the growth and sustainability of Zimbabwe's agricultural sector. In Zimbabwe, effective post-harvest practices are crucial for ensuring food security, enhancing farmers' incomes and reducing losses.

Given the importance of effective post-harvest practices in ensuring food security, enhancing farmers' incomes and reducing losses, this also presents the current state of post-harvest management in Zimbabwe together with key challenges and potential solutions.

1.2. Objectives of the Post-Harvest Survey

The main objective of the Post-Harvest Survey was to provide data on actual crop reaped, thereby informing policy formulation. The survey was designed to specifically provide statistics on:

- a) Actual crop produced
- b) Current stocks and storage
- c) Quantity and value of seed used
- d) Cattle condition

1.3. Uses of Post-Harvest Information

Post-harvest data is used widely by various stakeholders in the agriculture sector. The uses include the following:

- a) Economic analysis of the Agricultural industry.
- b) Formulation of Government's agricultural policy on subsidies, prices, marketing, etc.
- c) Compilation of Gross Domestic Product (GDP) figures
- d) Provision of baseline data for research

CHAPTER 2: SURVEY METHODOLOGY

2.1 Survey Design

2.1.1 Scope and Coverage

The survey covered all the eight rural provinces in the country and focusing on selected farming households in all wards. The survey followed the same households covered during the first and second round Crop, Livestock and Fisheries Assessments (CLAFA 1 & 2).

The target population were farming households at ward level. Sampling of farmers was sector specific, with 30 households systematically selected per each sector in the ward. In cases where the sampling units were less than 30, a census was considered for the respective units. A total of 58,000 farming households were selected for the survey from the rural 1,562 wards

The data collection process comprised conventional farm visits for face to face interviews with farmers to get the responses on survey questions. A census was carried out for largescale commercial farmers and irrigation schemes. For A1, A2, small-scale commercial farms, old resettlement schemes, communal areas and peri-urban farms, farmers were selected using systematic random sampling at ward level. The data collection system was developed using the CSPRO 7.5 software.

Figure 2.1 shows the distribution of interviewed farmers according to their Global Positioning System (GPS) location.

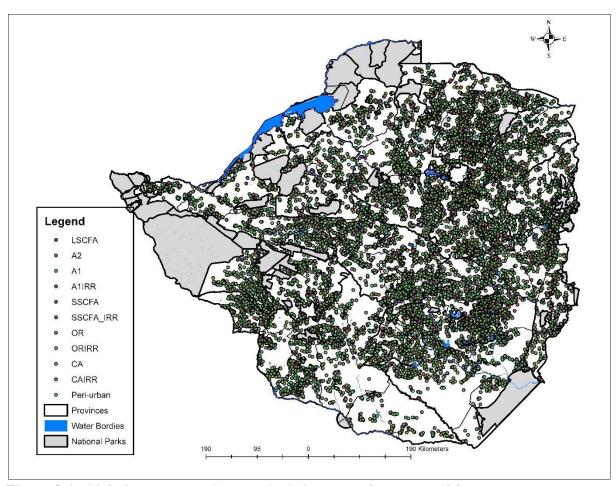


Figure 2.1: Global Positioning System (GPS) location of interviewed farmers

2.3. The Post-Harvest Survey Questionnaire

The 2024/25 PHS survey questionnaire had five sections namely:

Section A: Identification and Contact Details

Section B: Crop Production.

Section C: Seed Used

Section D: Cattle Status

Section E: Business Units and Nutritional Gardens

2.4. Training

Trainings for the PHS were done in 3 stages as follows:

- a) Training of Trainers (TOT) at National Level which entailed training of provincial level staff
- b) Training of Trainers at Provincial level to which district level staff were trained
- c) Training of enumerators that was done at district level.

The trainings were decentralized such that participants were trained in their respective provinces and districts. The trainings mainly aimed to acquaint survey personnel with the survey objectives, concepts and procedures.

2.5. Data Collection

Data collection was conducted by Agriculture Business Advisory Officers (ABAOs) from the Ministry of Lands, Agriculture, Fisheries, Water and Rural Development. In total, 5,500 ABAOs were involved in data collection. ZIMSTAT team leaders and enumerators and MLAFWRD district supervisors were responsible for verifying data collected by the ABAOs. Data for the PHS was collected during the period 28th August-5th September 2025. The survey used the face-to-face interview method where enumerators were visiting the sampled farming households and administering the questionnaire using CAPI.

Information was collected on area harvested, total crop harvested, quantity consumed, quantity sold, and quantity allocated to other uses such as donations.

2.6. Data Processing

Data cleaning and report writing was done over a 7-day period from 7th September to 14th September 2025. Microsoft Excel and Statistical Analysis System (SAS) were used for cleaning and analysis of the data.

2.7. Quality Control

To ensure collection of good quality of data, the following measures were undertaken:

- a) Three-tier training comprising national, provincial and district level and focusing on survey concepts and data collection techniques.
- b) Validation checks were embedded into the data collection system to enhance the quality of data collected.
- c) A verification exercise was conducted by ZIMSTAT team leaders, enumerators and MLAFWRD district supervisors.
- d) Verification was done using the same data collection system as was used by enumerators, with the data synchronized to the server as well.

- e) During data processing, and for validation, data from the verification process were compared against data collected by ABAOs.
- f) Data cleaning was jointly done by MLAFWRD and ZIMSTAT head office staff.

2.8. Challenges

Despite a 93% response rate, the survey faced challenges, including potential respondent fatigue from repeated visits to the same farming households in CLAFA 1 and 2. Non-response was largely due to survey fatigue, time constraints and respondents being unavailable during the survey period.

CHAPTER 3: SURVEY RESULTS

3.0. Response Rate

The overall response rate for the survey was 93.2%. The main reason for non-response were due to non-availability during the survey period, **Table 3.1.**

Table 3.1: 2024/25 Post-Harvest Survey Response rates by Province

Province	Response rate
Manicaland	96.4
Mashonaland Central	93.3
Mashonaland East	90.4
Mashonaland West	93.8
Matabeleland North	94.3
Matabeleland South	92.5
Midlands	92.6
Masvingo	92.4
National	93.2

3.1: Crop produced

A total of about **1,819,818 metric tonnes** of maize and **288,344 metric tonnes** of sorghum were produced during the 2025/25 Agricultural season. Total cereal production was **2,242,937 metric tonnes**, with **111,399 metric tonnes** of pearl millet and **23,376 metric tonnes** of finger millet also produced, **Table 3.2.**

 Table 3.2: Total Production (in metric tonnes) by Type of Crop

Crop	Quantity Produced (MT)
Maize	1,819,819
Sorghum	288,344
Pearl Millet	111,399
Finger Millet	23,376
Total Cereal	2,242,937
Ground nuts	95,827
Bambara nuts	31,070
Cow peas	22,078
Sunflower	38,828
Sugar beans	30,640
Soya bean	57,750

Out of the **1,819,819 MT** of maize produced during the 2024/2025 agriculture season, **279,448 MT** (**15,4%**) were consumed, and **1,064,510 MT** (**58.5%**) were in stock, **Table 3.3**.

Table 3.3: Utilization of Cereal Crops Produced

Crop	Quantity produced (MT)	Quantity Consumed (MT)	Quantity Consumed as % of produced	Quantity sold (MT)	Quantity used for other purposes (MT)	Quantity in stock (MT)	Quantity in stock as % of produced
Maize	1,819,819	279,448	15.4	398,899	76,962	1,064,510	58.5
Sorghum	288,344	49,425	17.1	80,018	11,074	147,828	51.3
Pearl Millet	111,399	22,459	20.2	4,991	3,575	80,375	72.2
Finger Millet	23,376	2,282	9.8	1,862	604	18,627	79.7
Total	2,242,937	353,614	15.8	485,770	92,215	1,311,340	58.5

The Communal Areas (CA) sector produced **794,105 MT** of maize during the 2024/25 agriculture season, contributing about **44%** to national maize production, **Table 3.4.**

Table 3.4: Maize production (in metric tonnes) by province

Sector	Quantity	Quantity	Quantity	
	produced (MT)	Produced	consumed/sold/used	Quantity in
			to date (MT)	Stock (MT)
		as % of Total		
LCCEA	50.160	2.2	41 240	16 921
LSCFA	58,169	3.2	41,348	16,821
A2	331,166	18.2	203,784	127,382
A1	436,682	24.0	164,213	272,469
SSCFA	36,753	2.0	12,660	24,093
OR	143,993	7.9	45,998	97,995
CA	794,105	43.6	280,430	513,675
Peri-Urban	18,951	1.0	6,877	12,074
Total	1,819,819	100.0	755,309	1,064,510

Among farming households reporting an impact on their potential harvest, approximately 40% attributed it to inadequate rains, 17.4 % to pests and diseases, and 10.6% to excessive rains or floods, Figure 3.1.

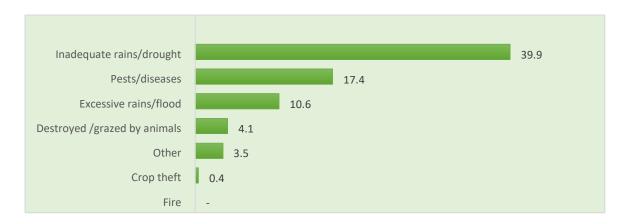


Figure 3.1: Percent distribution of households by factor that could have affected potential maize harvest

Out of the total farming households with maize in stock, about 72% reported "consumption" as the main reason for stocking maize, **Figure 3.2.**

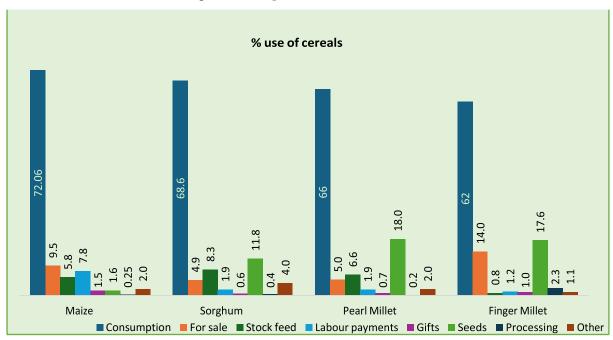


Figure 3.2: Cereal crops by purpose of stocking

In **Table 3.5**, Masvingo province recorded the highest production of sorghum and pearl millet, with outputs of **74,005 MT** and **47,843 MT**, contributing **25.7%** and **42.9%** to national output, respectively. Mashonaland West province recorded the highest maize production of approximately **393,058 MT** accounting for **21.6%** of the national output.

Table 3.5: Cereal Production (in metric tonnes) by Province

Province		As % of total Maize	Sorghum	As % of total Sorghum	Pearl Millet	As % of total Pearl Millet		As % of total Finger Millet
Manicaland	264,869	14.6	24,291	8.4	20,321	18.2	3,115	13.3
Mashonaland Central	283,692	15.6	40,442	14.0	2,733	2.5	283	1.2
Mashonaland East	340,653	18.7	17,721	6.1	3,767	3.4	4,563	19.5
Mashonaland West	393,058	21.6	47,724	16.6	386	0.3	329	1.4
Matabeleland North	47,105	2.6	24,973	8.7	19,924	17.9	1,416	6.1
Matabeleland South	58,518	3.2	15,007	5.2	8,904	8.0	129	0.6
Midlands	266,114	14.6	44,180	15.3	7,521	6.8	2,767	11.8
Masvingo	165,809	9.1	74,005	25.7	47,843	42.9	10,774	46.1
National	1,819,819		288,344	100.0	111,399		23,376	100

Of the **288,344 MT** of sorghum produced, the communal sector accounted for the largest proportion of **67.8%** (**195,496 MT**). Pearl millet production was predominantly in noncommercial agricultural sectors namely Communal Areas, A1 and Old Resettlements. (**Table 3.6**)

Table 3.6: Cereal Production (in metric tonnes) by Sector

Province	Sorghum	As % of total Sorghum	Pearl Millet	As % of total Pearl Millet	Finger Millet	As % of total Finger Millet
LSCF	2,695	0.9	2	0.0	52	0.2
SSCF	11,161	3.9	218	0.2	368	1.6
A1	46,015	16.0	3,6259	32.5	3,621	15.5
A2	2,161	0.7	63	0.1	81	0.3
Old Resettlement	30,805	10.7	2,425	2.2	1,409	6.0
Communal Areas	195,496	67.8	72,432	65.0	17,843	76.3
Peri-urban	11	0.0	0	0.0	2	0.0
All Sectors	288,344	100.0	111,399	100.0	23,376	100.0

Mashonaland East province produced **21,734 MT** of groundnuts accounting for **22.7%** of the national output, as Manicaland Province produced **21,540 MT** constituting **22.5%**. **Twentyseven percent** (**10,495 MT**) of the national sunflower production was from Midlands

Province, with Mashonaland West contributing 42.3% (24,426 MT) of the total soybean production. (Table 3.7)

Table 3.7: Oil Seed Crops Production (in Metric tonnes) by Province

Groundnuts	Groundnuts	As % of total groundnuts	Sunflower	As % of total sunflower	Soya beans	As % of total soyabeans
Manicaland	21,540	22.5	4,544	11.7	85	0.1
Mashonaland Central	10,998	11.5	5,581	14.4	15,752	27.3
Mashonaland East	21,734	22.7	4,804	12.4	5,927	10.3
Mashonaland West	6,676	7.0	7,137	18.4	24,426	42.3
Matabeleland North	992	1.0	1,334	3.4	1	0.0
Matabeleland South	2,774	2.9	1,335	3.4	0	0.0
Midlands	14,637	15.3	10,495	27.0	11,491	19.9
Masvingo	16,456	17.2	3,600	9.3	68	0.1
National	95,827	100.0	38,828	100.0	7,750	100.0

Of the **95,827 MT** of groundnuts produced during the 2024/2025 agriculture season, about **80%** (**76,325 MT**) was produced in Communal areas. The sector also produced **48.5%** (**18,845 MT**) of the national sunflower production. Approximately **46%** (**26,499 MT**) of the total soya bean output, was produced in A2 farms, while A1 farms produced **37.3%** (**21,541 MT**) of the crop. (**Table 3.8**)

Table 3.8: Oil Seed Crops Production (in metric tonnes) by Sector

Sector	Groundnuts	As % of total groundnuts	Sunflower	As % of total sunflower	Soya beans	As % of total soyabeans
LSCF	43	0.0	185	0.5	7,919	13.7
SSCF	1,036	1.1	730	1.9	33	0.1
A1	9,894	10.3	9,181	23.6	21,541	37.3
A2	2,227	2.3	2,024	5.2	26,499	45.9
Old Resettlements	6,191	6.5	7,787	20.1	292	0.5
Communal Areas	76,325	79.6	18,845	48.5	1,466	2.5
Peri-Urban	107	0.1	74	0.2	0	0.0
All Sectors	95,827	100.0	38,828	100.0	57,750	100.0

In **Table 3.9**, "ordinary room" was the most common storage type comprising proportions of **89.6%** for maize, **85.1%** for sorghum, **79.2%** for pearl millet and **93.1%** for finger millet.

Table 3.9: Percent Distribution of Main Storage Type used for Cereal Crops

Storage Type	Maize	Sorghum	Pearl Millet	Finger Millet
Ordinary room	89.6	85.1	79.2	93.1
Traditional granary	6.5	9.6	15.3	4.7
Standard granary	1.3	1.0	0.8	0.4
Tin Silo	0.1	0.1	0.7	0.1
Hematic bag	0.6	0.8	1.2	0.6
Other	2.0	3.4	2.8	1.2
All Types	100	100	100	100

3.2: Seed Used

About **31,153 MT** of maize seed were used during the 2024/25 agriculture season, from which **78.4%** (**24,427 MT**) were purchased seed. For all four cereal crops, purchased seed comprised the highest proportions of seed used by the farmers. (**Table 3.10**).

Table 3.10: Quantity (in metric tonnes) of seed used by Type of Cereal Crop

		As % of		As % of	Pearl	A+% of	total Finger	As % of
Seed source	Maize	total	Sorghum	total	Millet		Millet	total
Purchased Seed	24,427	78.4	1,710	58.3	601	63.9	171	74.0
Own produce	358	1.1	121	4.1	59	6.3	15	6.5
Other sources	5,368	17.2	1,103	37.6	280	29.8	46	19.9
Total	31,154	100.0	2,935	100.0	940	100.0	231	100.0

3.3: Cattle Status

This section presents information on cattle condition, sources of water and main source of cattle feed during the lean season. Cattle constitute a major source of income and livelihoods for farmers in the country. Midlands and Masvingo provinces recorded the highest proportions of households with cattle of 19.2% and 17.8%, respectively, **Table 3.11**.

Table 3.11: Distribution of Farming Households Owning Cattle by Province

Province	Number	Percent
Manicaland	142,043	12.7
Mashonaland Central	123,030	11.0
Mashonaland East	137,569	12.3
Mashonaland West	119,674	10.7
Matabeleland North	98,424	8.8
Matabeleland South	83,884	7.5
Midlands	214,743	19.2
Masvingo	199,084	17.8
National	1,118,451	100

In all provinces, more than **84.9%** of farming households with cattle, reported availability of adequate water for cattle during the lean season for the 2024/2025 agriculture season, **Figure 3.3.**

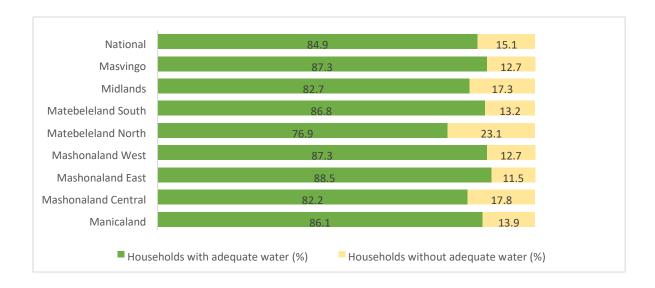


Figure 3.3: Percent distribution of farming households with adequate water for cattle within provinces

Figure 3.4 confirms that farming households across the country generally reported adequate water for cattle.

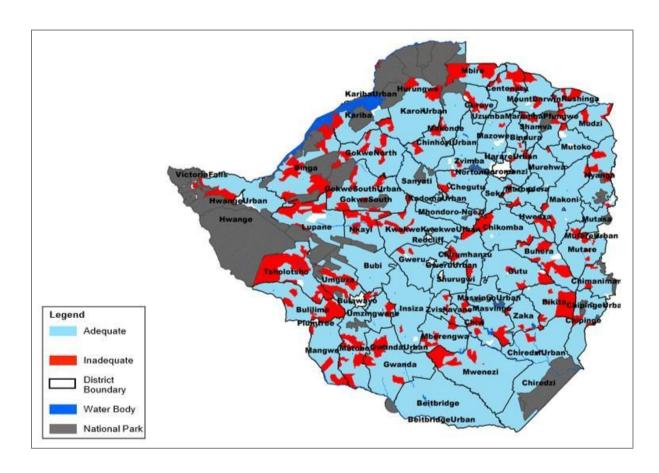


Figure 3.4: Distribution of farming households with adequate water for cattle within provinces

At the national level, **46.4%** of households with cattle reported an average trekking distance to water sources of 1-3 km, while **42.5%** reported an average distance of less than 1 km. Manicaland province was notable, with over **50%** of farming households with cattle reporting an average trekking distance of less than 1 km. (**Table 3.12**)

Table 3.12: Percent distribution of the average trekking distance to the water source for cattle

	Percent						
Province	Less than 1 km	1 – 3km	4 – 5 km	Above 5 km			
Manicaland	53.2	40.3	5.4	1.1			
Mashonaland Central	36.7	50.9	7.5	4.8			
Mashonaland East	44.3	47.7	6.0	2.0			
Mashonaland West	45.8	43.5	6.9	3.7			
Matabeleland North	31.3	47.8	15.1	5.7			
Matabeleland South	36.5	45.5	13.0	5.0			
Midlands	41.9	47.0	7.7	3.4			
Masvingo	38.5	47.9	10.1	3.6			
National	42.5	46.4	8.6	3.5			

Figure 3.5 provides a pictorial presentation of average trekking distances across the country, showing distances generally falling within a **3 km** radius.

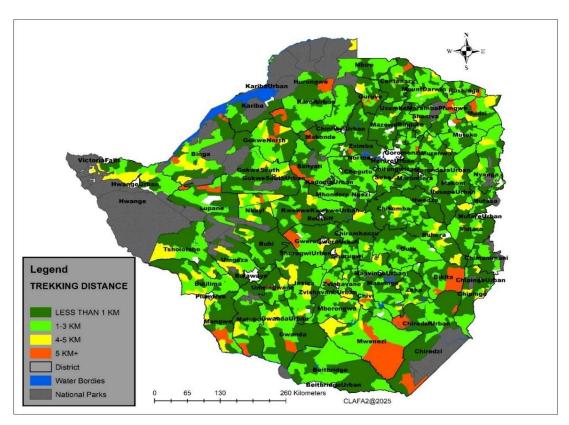


Figure 3.5: Distribution of average trekking distance to the water source for cattle

About 73% of households with cattle reported their livestock to be in fair condition during the survey period, while 25.3% reported a good condition. Matabeleland South recorded the highest proportion (43.3%) of households indicating their cattle had good body condition, while the other provinces recorded proportions below 30%. (Figure 3.6)



Figure 3.6: Percent distribution of households by cattle body condition

Figure 3.7 is a pictorial presentation of the cattle condition showing a generally fair condition at the time of the survey.

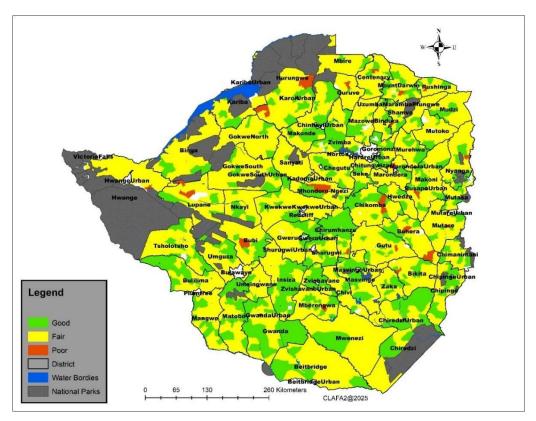


Figure 3.7: Distribution of households by cattle body condition

"Natural veld + crop residues" was the main source of cattle feed, with over 51% of households in all provinces reporting as such, **Table 3.13.**

Table 3.13: Percent distribution of households by main source of cattle feed

Province	Natural Veld only	Natural Veld+Crop residues	Planted pasture+Commercial Suppliments	Natural Veld+Commercial Suppliments	Own farm formulated feeds + Natural Veld
Manicaland	30.8	66.5	0.2	0.7	1.8
Mashonaland Central	38.1	61.2	0.0	0.2	0.6
Mashonaland East	34.4	62.1	0.4	0.9	2.2
Mashonaland West	44.5	52.7	0.2	0.6	2.0
Matabeleland North	41.0	55.7	0.4	1.7	1.2
Matabeleland South	45.1	51.7	0.4	1.9	0.9
Midlands	30.4	67.1	0.4	1.0	1.1
Masvingo	30.5	65.9	0.3	0.3	3.1
National	35.4	61.8	0.3	0.8	1.7

3.4. Business Units and Nutrition Gardens

A Business Unit is a community-based agribusiness model garden designed to promote income generation and self-reliance at village level. A nutrition garden is a systematically planned and managed community garden designed to provide a family or community with a diverse range of nutritious crops to meet their essential nutritional requirements. At the time of the survey, there were **746** Business Units out of which **93.7%** of Business Units were fully functional and **6.3%** non-functional. The reasons cited for non-functional business units were borehole not yielding enough water, pump breakdown and borehole manually operated (**Table 3.14**)

Table 3.14: Number of Business units by type and Province

Province	VBU	SBU	YBU	CBU	VTCs	Functional	Nonfunctional	Number of Business Units
Manicaland	34	12	1	2	1	47	3	50
Mashonaland Central	135	12	2	1	1	137	14	151
Mashonaland East	37	17	6	1	2	58	5	63
Mashonaland West	66	6	0	0	0	72	0	72
Matabeleland North	29	1	0	16	0	37	9	46
Matabeleland South	50	10	0	0	0	59	1	60
Midlands	110	19	0	2	1	120	12	132
Masvingo	134	18	1	18	1	169	3	172
Total	595	95	10	40	6	699	47	746

The most common crops grown in the Business Units were tomatoes, cabbages, and onions. The total production for tomatoes and cabbages were **504.6 MT** and **376.4 MT** respectively. (**Table 3.15**)

Table 3.15: Production from Business Units by crop ad province

Province	Tomato (MT)	Butternut (Mt)	Cabbage (Mt)	Irish potato (Mt)	Onion (Mt)	Leaf Vegetables (Mt)
Manicaland	110	39.8	47.6	21	3.9	75.4
Mashonaland Central	38.7	0.25	8.1	40	26.9	20.3
Mashonaland East	8.6	3.5	13.7	1.8	11	32.2
Mashonaland West	49.9	3.3	17.4	15.4	17.9	56.2
Matabeleland North	19.8	7.1	72.6	0.04	21.3	12.2
Matabeleland South	36	0	14.8	0	1.8	26.4
Midlands	89.9	22.7	84	0.4	16.1	127.8
Masvingo	151.7	5.9	118.2	19.9	37.5	160
Total	504.6	82.55	376.4	98.6	136.4	510.5

In total, Business Units had generated approximately **US\$985,500** from 1st January 2025 to the time of the survey. **(Table 3.16)**

 Table 3.16: Incomes generated from Business Units by province

Province	Incomes (US\$) generated in Business Units
Manicaland	199,418
Mashonaland Central	110,248
Mashonaland East	65,863
Mashonaland West	76,792
Matabeleland North	63,049
Matabeleland South	47,302
Midlands	184,478
Masvingo	238,305
Total	985,455

Nutrition gardens were **2, 242** of which **88%** were fully functional, and **12%** were partially functional, (**Table 3.17**).

Table 3.17: Number of nutrition gardens by province

Province	Number of Nutrition Gardens	Number of Fully functional	%Fully functional	Number of Partially functional	% Partially functional
Manicaland	284	252	89	32	11
Mashonaland Central	114	83	73	31	27
Mashonaland East	98	90	92	8	8
Mashonaland West	73	59	81	14	19
Matabeleland North	296	256	86	40	14
Matabeleland South	203	170	84	33	16
Midlands	435	392	90	43	10
Masvingo	739	673	91	66	9
Total	2,242	1975	88	267	12

CHAPTER 4: CONCLUSION AND RECOMMENDATIONS

4.1. Conclusion

The survey results revealed that the total cereal production reached **2,242,937** metric tonnes, comprising **1,819,819** metric tonnes of maize, **288,344** metric tonnes of sorghum, **111,399** metric tonnes of pearl millet, and **23,376** metric tonnes of finger millet, respectively. Based on the total cereal production recorded, at an estimated consumption rate of 7.7 kg/person/month (as per the 2017 Poverty, Income, and Consumption Expenditure Survey, PICES), about 386,000 metric tonnes will be required; for human consumption, and an additional 400,000 metric tonnes will be required for livestock leaving a surplus of **456,937** MT by May 2026.

Out of the **1,819,819** MT of maize produced during the 2024/2025 agriculture season, **279,448** MT (**15,4%**) were consumed between April and August 2025, and **1,064,510** MT (**58.5%**) were in stock. The balance of **475,861** metric tonnes can be attributed to sales and post-harvest losses recorded during the same period. The maize in stock is expected to cover the period September 2025 to May 2026.

Based on the total cereal production of **2**, **242**, **937 MT** and an estimated consumption rate of 7.7 kg/person/month (as per the 2017 Poverty, Income, and Consumption Expenditure Survey, PICES), the national cereal balance for April 2025 to May 2026 stands at **456,937 MT**. The balance is composed of the 2024/25 agriculture season's production. (**Table 4.1**)

Table 4.1: Cereal consumption scenarios and April 2025 to May 2026 national cereal balance

	MLAFWRD Planning Production Scenario	SADC Regional Average Consumption	Zimbabwe Actual Consumption (PICES 2017)
	10	8.5	7.7
	kg/pp/month	kg/pp/month	kg/pp/month
Human requirement (MT)	1,800,000	1,530,000	1,386,000
Livestock requirements (MT)	400,000	400,000	400,000
Total (MT)	2,200,000	1,930,000	1,786,000
Actual Cereal Production	2,242,937	2,242,937	2,242,937
April 2025 to May 2026 national cereal balance	42,937	312,937	456,937

CLAFA 2 had estimated a total cereal production of 2,928,206 metric tonnes, comprising of 2,293,556 metric tonnes of maize, 436,784 metric tonnes of sorghum, 188,261 metric tonnes of pearl millet, and 9,605 of finger millet, respectively. The survey results revealed that the total cereal production reached 2,242,937 metric tonnes, comprising 1,819,819 metric tonnes of maize, 288,344 metric tonnes of sorghum, 111,399 metric tonnes of pearl millet, and 23,376 metric tonnes of finger millet. Between April and September 2025 maize purchases as recorded by GMB, ZMX and other buyers amounted to 774,927 metric tonnes. (Table 4.2)

Table 4.2: Cereal estimates, purchases and consumption

	CLAFA 2 Estimate	Post-Harvest Survey Estimate	Maize purchases (GMB, ZMX & other buyers - April - September 2025)	Consumption (April-August)
Total cereals	2,928,206	2,242,938	774,927	279,448
Maize	2,293,556	1,819,819	774,927	279,448

The 23% disparity between the CLAFA 2 estimates in cereal production vis-à-vis the PHS results is ascribed to various factors, including the consumption of green mealies, cereal sales, early drying of cereals for consumption to cushion the extended effects of the 2023/24 El Niño induced drought, silage usage, field and post-harvest losses, and other residual variables.

Approximately 73% of households with cattle reported their livestock to be in fair condition during the survey period, while 25.3% reported a good condition. Over 84.9% of cattle farmers reported the availability of adequate water for cattle during the lean season. The average trekking distance to the main water source was generally within 3 km radius, while natural veld and crop residues were reported as major sources of cattle feed.

The PHS survey revealed that a **31%** increase in the number of business units established was recorded between April and August 2025, as **766** business units were established across all provinces including Harare and Bulawayo, out of which 93% were fully functional. The nonfunctionality of the remaining **7%** was mainly due to boreholes not yielding enough water, pump breakdown, and boreholes manually operated.

4.2. Recommendations

The Post-Harvest Survey results provide foresight on food and nutrition security programming between September 2025 and May 2026. It is therefore recommended that:

- a) The Ministry considers augmenting the livestock cereal requirements by allowing the private sector to import grain whilst building the Strategic Grain Reserve with local production.
- b) Intensify agro-ecological tailoring thrusts to boost the cereal basket with traditional grains in the face of climate change.
- c) Mobilize resources to support research and development initiatives that seek to boost productivity whilst maintaining the adaptive capacity of traditional grains.
- d) To mitigate post-harvest losses and improve the agricultural sector, several solutions and interventions can be implemented:
- e) Improved Storage Technologies: Adopting modern storage solutions like hermetic storage bags and metal silos can significantly reduce losses. Hermetic storage bags prevent pest infestations and aflatoxin contamination, while metal silos provide better grain preservation.
- f) Infrastructure Development: Upgrading rural roads and providing affordable transportation services can enhance post-harvest management. Road rehabilitation facilitates faster transportation to GMB, reducing travel time and damage to produce.
- g) Market Linkages: Strengthening market connections through cooperatives and information access can benefit farmers. Cooperatives enable farmers to negotiate better prices, while market information empowers them to make informed decisions.
- h) Financial Support: Access to finance is crucial for farmers to invest in post-harvest technologies. Low-interest loans and government subsidies for storage facilities can reduce the financial burden, enabling farmers to adopt modern practices.
- i) Climate-proofing agriculture should be accelerated at household and national levels through Pfumvudza/Intwasa and accelerated irrigation development.
- j) Irrigation development, nationally, is lagging, with 217 000 functional irrigations against a target of 496 000 ha, necessitating the need to further incentivize the private sector to invest in this important subsector, so that the target of 50 000ha annually can be achieved. Of the 496 000ha targeted, 350 000 ha should be dedicated to summer cereal production.

- k) Mobilize resources to collect grains gathered by traditional leaders from Presidential Input Scheme households. Village Heads contributed 15 kg, and Chiefs contributed 20 kg. This amount accounts for the need for households to replenish their strategic stocks.
- Agriculture should be viewed as a business irrespective of scale, from household to corporate level – necessitating further capacitation of farmers (through farmer field schools), AGRITEX Business Advisors (physical and mental motorization) and value chain actors.
- m) Prepare for the 2025-26 agriculture season by following the summer plan.

Cattle

- a) Feed Security and Fodder Development: Scale up fodder crop production (e.g., velvet bean, lablab, sorghum, fodder maize) and promote hay/silage making at household and community level to reduce reliance on natural veld and crop residues, especially during the lean season.
- b) Water Access Improvement: Invest in rehabilitation and construction of water infrastructure (boreholes, small dams, solar-powered water systems) to reduce trekking distances for cattle, particularly in Matabeleland North and South where households trek longer distances.
- c) Capacity Building for Farmers: Strengthen farmer training on cattle nutrition, rangeland management, water harvesting, animal health, and business-oriented livestock production through farmer field schools and AGRITEX advisors.